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Statistical Characterization of 

Filter Characteristics
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Components used to build filters are not precisely 

predictable

• Temperature Variations

• Manufacturing Variations

• Aging

• Model variations

➢ Different approaches are used to address each of these problems

➢ Manufacturing variations is one of the most challenging problems for 

building integrate filters and will be the focus of this lecture

Review from Last Time



R(t1)

Wafers are processed in “batches” or “lots” of 20 to 40 wafers 

and variations occur over time (process not completely 

stationary)  and over location

These variations are often the major contributor to process 

variability and can be in the               range or larger30%

R(t2)

R(t3)

These variations often look like random variations

Review from Last Time



Within a batch, individual wafers are subjected to some 

variability during processing

Temperature may vary with position of wafer in the boat during diffusion

Environment may vary with position of wafer in boat during diffusion or other 

processing steps

This variation causes characteristics  of components to vary from wafer-to-wafer 

These variations often look like random variations



Environment may vary across individual wafers due to 

gradients in environmental variables during processing

This variation causes characteristics  of components to vary from die to 

die on  a wafer 

These variations often look like random variations

+

+



Smaller variations may occur across individual die due to 

gradients in environmental variables during processing

This variation causes characteristics  of components to vary across a die 

These variations often look like random variations

+

+



Even smaller variations may occur across individual closely 

placed devices due to local gradients and local random 

processing variations

This variation introduces local gradients in device characteristics as well as 

local random variations 

The direction and magnitude of the local gradients are random variables

The local random variations are also random variables

+

+
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Effects of manufacturing variations on components

➢ A rigorous statistical analysis can be used to analytically predict how 

components vary and how component variations impact circuit 

performance

➢ Montecarlo simulations are often used to simulate effects of component 

variations 

➢ Often key statistical information is not readily available from the foundry

• Requires minimal statistical knowledge to use MC simulations

• Simulation times may be prohibitively long to get useful results

• Gives little insight into specific source of problems

• Must be sure to correctly include correlations in setup
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Modeling process variations in semiconductor processes 

XNOM is the nominal value of the parameter (typically TT) and is a constant 

and part of the standard device model in a given process

xRPROC is a random variable that changes from one “lot” of wafers to another

xRWAFER is a random variable that changes from one wafer to another in a batch

xRDIE is a random variable that changes from die to another on a wafer

xRLGRAD is a random variable that is comprised of a magnitude and direction 

which are themselves both random variables and characterizes very local 

variations on a die

xRLVAR is a random variable that characterizes very local variations on a die (



xRPROC is a random variable that changes from one “lot” of wafers to another

uncorrelated

Correlated 

(and equal)

Correlated 

(and equal)

xRWAFER is a random variable that changes from one wafer to another in a batch

uncorrelated

Correlated 

(and equal)

Correlated 

(and equal)



uncorrelated

Correlated 

(and equal)

Correlated 

(and equal)

xRDIE is a random variable that changes from die to another on a wafer



uncorrelated

XRLGRAD Correlated (and equal)

xRLGRAD is a random variable that is comprised of a magnitude and direction 

which are themselves both random variables and characterizes very local 

variations on a die

xRLVAR is a random variable that characterizes very local variations on a die

xRLGRAD   xRLVAR

XRLGRAD Correlated (and equal)

XRLVAR Uncorrelated XRLVAR Uncorrelated 
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Modeling process variations in semiconductor processes 

xRPROC, xRWAFER, xRDIE, xRLVAR often assumed to be Gausian with zero mean

Magnitude of  xRLGRAD is usually assumed Gaussian with zero mean, direction 

is uniform from 0o to 360o
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Relative size between σLVAR and σ|GRAD| dependent upon A, P, and process
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Actual

Channel

Drawn and Actual Features for MOS Transistor

Effects of layout on local random variations 

Variations also occur vertically in both oxide thickness and doping 

levels/profiles and often these will dominate the lateral effects
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Modeling process variations in semiconductor processes 

• Statistics associated with matching/sensitive dimensionless parameters 

such as voltage or current gains, component ratios, pole Q, …  (almost 

always closely placed) dominated by xRLGRAD and xRLVAR (because locally xRPROC,

xRWAFER, xRDIE are all correlated and equal)

• Statistics associated with value of dimensioned parameters (poles, GB, 

SR,R,C,transresistance gains, transconductance gains, … dominated by 

xRPROC)

• Special layout techniques using common centroid approaches can be 

used to eliminate (or dramatically reduce) linear gradient effects so, if 

employed, matching/sensitive parameters dominated by xRLVAR but 

occasionally common centroid layouts become impractical or areas 

become too large so that gradients become nonlinear and in these cases 

gradient effects will still limit performance

• Gradients are dominantly linear if spacing is not too large

• Higher-order gradient effects can be eliminated with layout approaches that 

cancel higher “moments” but area and effort may not be attractive
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Be sure correct statistical information is available when doing 

a statistical analysis using either analytical or Montecarlo 

methods 

• Some statistics associated with making many measurements over many 

devices over many lots of wafers

• Some statistics associated with many measurements in a particular 

process run

• Some statistics associated with making many measurements across a 

wafer

• Some statistics associated with making many measurements on closely-

placed devices

• Some statistics associated with making many measurements on closely-

placed devices that have common-centroid layouts

• Some statistics presented (particularly in literature or occasionally in PDK) 

with limited information about how data was gathered



Statistical Modeling of dimensioned parameters

Determine the standard deviation of the pole frequency (or band edge) of 

the first-order passive filter.

Assume the process variables are zero mean Gaussian variable 

with standard deviations given by 

Example:

1
p = 

RC

NOM RPROC RWAFER RDIE RLGRAD RLVARX = X + + + + +x x x x x

Assume further that the effects of all other random components can be neglected

0.2 0.1= =
RPROC RPROC

NOM NOM

R C

R C

 



Statistical Modeling of dimensioned parameters

Determine the standard deviation of the pole frequency (or band edge) of 

the first-order passive filter.

Assume the process variables are zero mean Gaussian variable 

with standard deviations given by 

Example (cont):

1
p = 

RC

R = RNOM+RPROC C = CNOM+CPROC

( )( )NOM PROC NOM PROC NOM NOM NOM PROC NOM PROC PROC PROC

1 1
p = 

R +R C +C R C R C C R R C
=

+ + +

• p is a multivariate random variable

• The pdf of p is extremely complicated

0.2 0.1= =
RPROC RPROC

NOM NOM

R C

R C

 



Stay Safe and Stay Healthy !



End of Lecture 14


